{ "cells": [ { "cell_type": "markdown", "id": "06c19afd", "metadata": {}, "source": [ "## Josepshon Junction array\n", "\n", "With QuLTRA, it is possible to simulate an array of N Josephson junctions without introducing N separate nodes into the circuit, which would slow down the computational process. It is sufficient to instantiate a single J component in the circuit and specify the number of series-connected JJs to include.\n", "\n", "In this simple example, we progressively increase the number of junctions in a qubit to show that its anharmonicity is proportional to $\\frac{1}{N^2}$" ] }, { "cell_type": "code", "execution_count": 3, "id": "0bae5833", "metadata": {}, "outputs": [], "source": [ "import qultra as qu\n", "import numpy as np\n", "\n", "Cj=90e-15 #qubit capacitance\n", "Lj=8e-9 #qubit inductance\n", "\n", "N=np.arange(1, 21) #number of Josepshon junctions\n", "alpha=[]\n", "\n", "for n_junct in N:\n", " net=[qu.C(0,1,Cj),qu.J(0,1,Lj,n_junct)]\n", " circuit=qu.QCircuit(net,4,6)\n", " cross_kerr_matrix=circuit.run_epr()\n", " alpha.append(cross_kerr_matrix[0,0])" ] }, { "cell_type": "code", "execution_count": 4, "id": "459e2efb", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYHRJREFUeJzt3Qd8Tff/P/BXdiSSECQxIvYOEkptVbs1SmlRpbT9Uqt00WG2papaq9WJ77dWKW2VKrUVpST2jD0iVrbMe/6P98fv5n8TCUncfV/Px+OSc+65537u5557zvt8ppOmaRqIiIiI7JSzpRNAREREZEoMdoiIiMiuMdghIiIiu8Zgh4iIiOwagx0iIiKyawx2iIiIyK4x2CEiIiK7xmCHiIiI7BqDHSIiIrJrDHYcyMCBA1G0aFE4qoULF8LJyQnnz58vcL5VqFABji4jIwNvv/02goOD4ezsjO7du8Oevmdz+/TTT1GpUiW4uLigfv36sCUTJ05UeXzz5k3Ygn379qFp06bw9vZW6Y6MjMx1u61bt6rn5X9rJmmU74Dyj8GOlfvyyy/Vgd24cWNLJ4X+T3JysjrRWPsJ0dh++OEHdYF+9tlnsWjRIowePdqi6fn444/xyy+/wBZt2LBBBY7NmjXDggUL1Gch00hPT0evXr1w+/ZtfP755/jf//6HkJAQWLt169YxoDEmmRuLrFfTpk21ChUqyPxl2unTpx9pXwMGDNC8vb01R5WRkaHdvXtX0+l0BXpdWlqalpKSkrV848YN9X1MmDBBcyTPPfecVrZsWc1ayLEsx7SxvmdzeueddzRnZ2ctNTVVs0Vy7MtvQH4L1u748eMqrd9+++1Dt83MzFTHjvxvacOGDVPpzo2kMT093expsmUs2bFi586dw65duzBz5kyUKlUKixcvhrXT6XRISUmBNZLqAk9PT1VSVhBubm7w8PCAo4uJiUGxYsVg7Qr7PZs7L4sUKQJ3d3dLJ8XqS1GNkdciP8euVM/KsSP/WzNJo6urq6WTYVssHW1R3qZMmaIVL15c3f0NHTpUq1q16n3bnDt3TkX/n376qfb1119rlSpV0tzd3bWGDRtqe/fuzbVk5/Lly1q3bt3U3yVLltTeeOMNdTdsSPbXpEkTzd/fX/P09NTCw8O1FStW3Pf+8t5yB/Ljjz9qtWrV0lxdXbXVq1drCxYsUM/t2LFDGzFihHofPz8/7dVXX1Wf586dO1r//v21YsWKqcdbb7113514YmKiNmbMGK1cuXLqM1WrVk2lK+d2+jTI+9auXVttK2n5448/sm2nT5PkmaF169ZpLVu21IoWLar5+PiovFu8eHG2fAsJCcmW3zkfcqf7ww8/qL8PHDhwXz599NFH6k5e8j4v58+fV9+zfE7Jc8n7Z5999r70SknTxIkTtSpVqmgeHh5qu2bNmmkbNmzQHuTWrVvqu65Tp4767uWzduzYUYuMjHzg6/L6zFu2bFEP/d+5vUbyvDDHn9xZf/HFFyqt8hlluw4dOmj79u1Tz+eWHn0pT17f87x589RxIcdH6dKltddee00dh4ZatWqljqGjR49qrVu31ooUKaKVKVNG++STT7T8kLvtyZMnZ/0O5bgZN25ctpLB3NJumE855TdNeX3u3L4j/T4PHjyojn3ZZ+XKlbN+41u3btUaNWqkjkM5Hjdu3JhryY6UmvTq1UsdS3Icjhw5UpU65PS///1PnUNkf3JOk1LCixcv5vo5//33X61FixYqTaNGjXpgfm/atElr3ry55uXlpc4vXbt21Y4dO5b1vBwTOfNa3icvueWVfIe5lSDKfgz3pX/t8uXLtQ8//FCVgsqx26ZNm1xL5ffs2aN16tRJnf8k/aGhoeqYzyvdhpfr3EqW5bwjv2f5LuS3Je+7e/fuXI+RnTt3aqNHj1a/K3nv7t27azExMdm2ld9a+/bttRIlSqjvTWoYXnrpJc1WMdixYjVq1NAGDx6s/t6+fbs6SHMGMPqLSlhYmLr4yQlw+vTp6iCWIEEujHryA5KDVk4ogwYN0r766iutZ8+e6vVffvlltv3Ka+ViMHfuXG3mzJnqxCfb/f7779m2k3U1a9bUSpUqpU2aNEldUCIiIrJ+VPXr11c/QFkvwY2se/vtt9UJqm/fvup9n376abV+0aJFWfuVgEZ+rE5OTtrLL7+s0tGlSxe13euvv35fGurVq6cuYBIgyglDLjbyI7558+YDLwayTt5DLqoSkEg65f0krbkFOxKASb7Jfp555hl1EpeHXDTi4+PVCVou3jnJRVY+z4PIhUY+x/jx47VvvvlGe/fdd9WFQd47KSkpaztZL2l+5ZVXVNH8Z599pvXp00ebNm3aA/cvJy+5oI0dO1YFxnJRlhOyXCSuXLmS5+vkM8tnlONRjgv9Z46Oji5wsJPf42/gwIFqvVwM5PucMWOGCpDmzJmjnpf3lwuJXBT16dm1a1ee37P+4ty2bVu1j+HDh2suLi7aY489lu03IhcvCSSCg4PVhVbSJd+bvFaC4ofRX6QkSJVj6cUXX1TLcjHRk7RKuiX9+rRHRUXluc/8pqmgwY5+n3KjIXkix6jkybJly7SgoCAVUEve648ROb5z5qdcoOV3Kb/PF154Qa0z/O0IufDL8SoBjqRdzhNyfpKLp2GwKWmS95VzidwgyTH6yy+/5JkvEoDJzZUEY3LO0+9XfjP6PJBjQn4vki4JxCSvH3RTYIxgR87FDRo00D7//HOVh3IekvOnIUmDPhiWvJTfgqRPjk99utu1a6f2pz9G5JFXsHPkyBEV4OjPgXIuqFixojrGJKjKeYxIGuUYku9dzlfyvffu3Ttru+vXr6t81N9gynnmvffeU+d6W8Vgx0rJ3Y0clPo7Krn4y4Um552O/qIi0fft27ez1v/6669q/Zo1a+47EctFzpD+x2koOTk527JcECQgyHnBlv1JiYXcdRrS/6jkbtywJEZKi+TEN2TIkKx1clcvn83wxCEnOXm9nCgNyUVEXn/mzJlsaZATh+E6CT5kvf7iaJgm/YkwNjZW3QU1btz4vrtRwzQbBjsPa7MjQYdcRAzr/OWO62F377nluZA7M3ntf//736x1EhA99dRTWkFJ6ULOtgiSF3JCzHlM5EZ/522ooMFOfo6/zZs3Z12ccjL8XvJqs5Pze5Y7Vjk+5C7V8PPLBVq2kxI5w8+YM7+lJFIuwhKYPYiUkMlrJVg29Oabb6r18rkK034uv2kqaLAj65YsWZK17sSJE1m/Z8ML5J9//nnfd6kPdqQkxZDcIMl6+f3pSyvlQio3EoYOHz6sAhXD9fo0zZ8/P1/5IjdSAQEBqsRST95X0i9BZs7Pn1vJtCmCHQkIDNtizZo1S62Xz6w/30kgIvvNWbJoeHw/qM1OzvOPBNNyjBsGzVevXlXnNym5y3mMSFBl+F5SyiPfk5wThZSSy3b6klR7YN0Vkw5M2ucEBgbiiSeeUMvS/uC5557DsmXLkJmZed/28lzx4sWzllu0aKH+P3v27H3bDhkyJNuybJtzO2lPoHfnzh3ExcWp7Q4cOHDf/lq1aoVatWrl+jkGDx6cre2E9CqT36qsN2xj0bBhw2xpkJ4Isn7kyJHZ9vfGG2+o1//xxx/Z1rdt2xaVK1fOWq5bty58fX1z/fx6GzduREJCAsaOHavqwA0Vtr3Hiy++iKtXr2LLli3ZvkvJz549ez7wtYZ5Lj1Ibt26hSpVqqi2Bob5LstHjx7F6dOnC5Q2aXekb4sgx5DsX4YiqF69eq7fq6k87Pj7+eefVf5PmDDhvtcW5nv566+/kJaWhtdffz1bW4xXXnlFHSNr167Ntr3kyQsvvJC1LO1qGjVq9MBjSX/MijFjxtx3zIqc71MQhU3Tw/b5/PPPZy3LcSDHVs2aNbP1/tT/ndt7DRs2LNvyiBEjsuXFqlWrVDu+3r17q27q+kdQUBCqVq2a7XeiP0Zfeumlh6b92rVrqvu4DAvh7++f7Xffrl27rPe3BEm/YVusnOfiiIgI1R5Tjsec7YgKc3zLb1l698lQEDKUgV7p0qXRt29f7Ny5E/Hx8dle8+qrr2Z7L0mj7OfChQtqWZ+u33//XZ2L7AGDHSskB50ENRLoyI/izJkz6iEnnevXr2PTpk33vaZ8+fLZlvWBjwQqhuSiLo2dc26bczs5yB9//HG1vZxM5DVfffWVCnpyqlixYp6fJWe6/Pz81P8yVkvO9YZpkB9dmTJl4OPjk207ORHrn3/Q++T1uQxFRUWp/+vUqQNjkROtnGT0jcnlRL906VJ069btvs+S0927dzF+/HiVN3LSL1mypMr32NjYbPk+efJkta5atWoIDQ3FW2+9hUOHDj00bZIW6XorFxnD/ctrc/teTSE/x598L/LdG17EHoX+WJGLuSG5IMnFIeexVK5cufsuOg87lvTvI8GUBKiG5MIuF4+c71MQhU1TQfcpv8Pcfpsit/eSY8mQ3HBIHujHOJKAXG5OZDv53g0fx48fz2o8rFe2bNl8NdrO6zvVnyMkoEpKSoIlPOxcbOzzzo0bN1RD7rzyQn73ly5dKlAa5QZWbs4mTZqkzhNy/pIhElJTU2Gr2JzbCm3evFnduUjAI4+c5ELavn37bOukFCQ390o8H76doR07dqBr165o2bKlGudHLt7SI0kO9iVLljywRCKnvN4vt/U501oQ+f38pibpkLupb7/9VuXd33//rUp6DO/K8yJ3xZLHcsfXpEkTdZGRi5HcfcsJS0++Fzlh/vrrr+qO7rvvvlNBzPz58/Hyyy/nuX8Zy+WDDz7AoEGDMGXKFBVMyIVJ3s9w/wWR151obqWP+T3+LO1RjyVT9ALLT5qM9V08yufPmQY5rmSdlMTmtt+cg5w+6FxiKQ/K19w+k7Wcix7E5SFplM+8cuVK7NmzB2vWrMGff/6pzhufffaZWmeLg9My2LFCEswEBARg3rx59z0nxcKrV69WFzZTnRikGkHuwOUAN+xyLRdic5FBv6T6QaqZDEtETpw4kfX8o9JXex05cuS+u/FHuZhJVZacFOQkISd5uYvt0KHDQ/crJ5cBAwao1+pJN34pxclJAhUpLpdHYmKiCoBkALIHBTuyfykt/P7777Otl/3L3Vth6O8Ic6bxUUox5HuRY08GgXtQ6U5+gwr9sXLy5MlsxfxStSUlp1IFagzyPnJxl9IMfQmkkNJYyR9TD2Rniu/iYeSzGpbsSgm05IF+xHH5LuUCKttISaSxGH6nOck5Qo5nGS3ZWPma229Q8tXweCrMeedBx15+j285v3h5eeWZF3JDE5yjtC6/pHRfHh999JG60e3Xr5+6AX/QecZasRrLykhVhgQ0Tz/9tBqpNudj+PDhKgD47bffTBr1yw/N8I5QiqXNOVpt586d1fvPnTs323opwZC0derU6ZHfQ0rHJJCaOnXqfWMDPeguTE4sIrcToL7dgDykxEUCRymZyc+YGJLvOd93zpw5992ZS1sbQ3KXJcHaw4qYc9v/ihUrcOXKFTzKRUf2u3379mzrpVSrsKT4XNIpReg5GaZfLmZ5fQeG5IIiVSOzZ8/O9noJ+qT67qmnnoKxjlnxxRdfZFsv42QJY73Pwy6iht+FHDvffPONyd4z5w2ZHK9C//vs0aOHOj7ku8x57MlyzmM5v6S0WabYkJG8DY8BCSCktFP/XRgrX6U0Q4Jjw2r+nFVD+RUeHq6CPzlOch6/OY9v8bBjXPJXzmVS0ms4RYoE2RKgNG/eXLVNKwipzsr5femnNLHVqiyW7FgZCWIkmJFqpNxIlK0fYFAaJZuCnJTlBN2xY0dVJSP16nJSkwtqftqGGEOXLl1UKcR7772nfsD16tVTJzH5QUu1i2Fj5MKSE4AET3KX8thjj6nPKndxBw8eVHXgciLNjZSoSYPs5cuXq7tVKX2Q+nfDOngp3XnzzTfV3/mpwhIS4MpQ9lJ9JfvfvXu3Kt0qUaJEtu3kudatW6NBgwbqvf/9919VaiOB8MP2L+19pDRI5gk6fPiwOo4Kc3eqJ2mVofjlIidBqHwvciHI2RajIOR779+/vwpOpORAjkMpLZDqVXlO/znl80v+yLEqbXzkApLbtCryexk3bpy64Mq+5Lcld8ESkMn3nt/v52HkGJWSOQku5AIl7R727t2rjiNpPKrvbGAqtWvXVucH+az6UjG5C5c5zUxFSsYkPyVf5Xj98ccf1e9I8kLI8fDhhx+qNMnvWPJBbjDkdVJCLQ1l9b+TgpKpSySokipf6fAgN4pyHMoxacxpFuT8IL8v+YzS0FqqkOVzFvYcJCUt0v5RznESQMjvUYI3KYWRjgdSqqk/voV00pCSYQlqDBuUG5I8lg4XEti89tpr6ubq66+/VoHJ9OnTC5xGOWbl9/HMM8+ozynXJKmal3OmMQNJs7J0dzDKTsaskLFIDMdVyUnGIHFzc1NjyBgOKviw7ol5dXfVdyM19P3336tBDKVbsoyvIl0Wc9tOlqWLZE76Lo45uy7mNcx8bmlLSEhQXSKlK7d8XknPgwYVzClnl9G8uub+9ttvaloOGSPH19dXjYmxdOnSPLue68fBkO7S0t0zt27o165dU105ZZyK/JJuqDJol4wVIgMcSrd96Q6c83NId3xJowxGJmmW70e68BqOF5NX13MZU0PG4pDXyUCE0rU9ZxfagnQ9F/JdShdoGU9Exub4z3/+o8b9yGtQwZxyO66ke6581/LZJI9l7BUZc2f//v1Z20je6AfEy8+ggtLVXPYnx1JgYKAawDGvQQVzyu0YyGtQQRnvRboWy/vIODY5BxV8UF7kpiBpkq7H0q1YfrfyGWWMGRm+Iq9BBXOS/eU2rEHO35j+O5MB/GQ4COniLN+9jF+U26CCP//8sxpbSz6zPOR7kP2dPHnyoWl6kL/++ksdx/rfrpw/DQcVNEbXcyFjWekHCZT3k6FB8up6nvN9chuGQcjAfjKWjn4QwLp162YbKkN+AzLekBz7MtxGfgYVlHOGnDvkt/jEE09kjT31sPNyzs8t+5JhNMqXL68+s3Txl/HQ5HPbKif5x9IBF5G9kd4gcrcmvaukUTARWT/p6SrVnlKKKKUkZD/YZofIBBYuXKjaS0h1DBHZBukFKwrbYJ+sF9vsEBl52IBjx46p3gvSPkHfK4WIrJeMySPt12bNmqXGHzJmzzGyDqzGIjIiaTgsM9U3a9ZMNWKUQdKIyLpJ42kZlE8G6ZSGuTI6NdkXBjtERERk19hmh4iIiOwagx0iIiKya2yg/H/zt8j8RTLYlSnmtSEiIiLjk5Y4MuihDCwqAzbmhcEOoAKdws4dQkRERJYl03dIT7q8MNgBsiaalMwq6BwieUlPT1fTG8icJTJjOJkG89l8mNfmwXw2H+a17edzfHy8KqwwnDA6Nwx2DGaXlUDHmMGOTBgp++OPyHSYz+bDvDYP5rP5MK/tJ58f1gSFDZSJiIjIrjHYISIiIrvGYIeIiIjsGoMdIiIismsMdoiIiMiuMdghIiIiu8Zgh4iIiOwagx0iIiKyawx2iIiIyK4x2CEiIiKTyNRp+Ofcbey/6aT+l2VL4HQRREREZHTrj1zDpDXHcC0uBYAL/nv6X5T288SELrXQsU5pmBNLdoiIiMjogc7QHw/8X6Dz/0XHpaj18rw5MdghIiIio5GqKinRya3CSr9OnjdnlRaDHSIiIjKavedu31eiY0hCHHletjMXBjtERERkNDEJKUbdzhgY7BAREZHReLm75Gu7AB9PmAt7YxEREZFR7L9wBxN+PfrAbZwABPl5olFFf5gLgx0iIiJ6JDqdhm93nMWnf55Ehk5DqaLuuJGYpgIbw2bIsiyk+7mLs37J9FiNRURERIV2OykNgxftw9Q/TqhA5+m6pbH5zdaY/0K4KsExJMtfvRBu9nF2WLJDREREhSI9qkYujUB0fArcXZ0xsUtt9GkUDCcnJxXQtKsVhN1nYrBhxz9o36IxmlQJMGuJjh6DHSIiIipwtdVX26Iwc+MpNV5OpZLemNcvHDVL+2bbTgKbxhX9ceu4pv63RKAjGOwQERFRvt1MTMXo5ZHYcfqmWn4mrCw+7F4H3h7WG1JYb8qIiIjIquyKuolRyyJxIyEVnm7OmNytDno1KKeqrawZgx0iIiJ6IKmqmrP5NGZvOg2Z5aFqQFFVbVUt0Ae2gMEOERER5SkmPgWvL4/ErqhballKciZ1qw0vd9sJIWwnpURERGRWO07fUO1zbiamqZGRpW1Oj/BysDUMdoiIiCibjEwdvvjrNOZtPQNNA2oE+WBu33BUCSgKW8Rgh4iIiLJci7uLUUsjsff8vVnJ+zQqr0Y89nTL35xX1ojBDhERESlbTsZgzPJI3ElOh7e7C6b2rIuu9crA1jHYISIicnDpmTrM2HASX287q5Zrl/FV1VYVS3rDHjDYISIicmBXYu9ixJIDOHAxVi2/2CQE73auadPVVjkx2CEiInJQG49dx5srDiLubjp8PFzxybN10TnUvJN0mgODHSIiIgeTlqHDJ+tP4Pud59Ry3XJ+mNsnHOVLeMEeOVvyzadOnYrHHnsMPj4+CAgIQPfu3XHy5Mls26SkpGDYsGEoUaIEihYtip49e+L69evZtrl48SKeeuopeHl5qf289dZbyMjIMPOnISIisn6Xbiej19e7swKdQc0qYuWQpnYb6Fg82Nm2bZsKZPbs2YONGzciPT0d7du3R1JSUtY2o0ePxpo1a7BixQq1/dWrV9GjR4+s5zMzM1Wgk5aWhl27dmHRokVYuHAhxo8fb6FPRUREZJ3WH7mGzrN34OClWPh6uuKb/g0wvkstuLtaNByw72qs9evXZ1uWIEVKZvbv34+WLVsiLi4O33//PZYsWYI2bdqobRYsWICaNWuqAOnxxx/Hhg0bcOzYMfz1118IDAxE/fr1MWXKFLzzzjuYOHEi3N3dLfTpiIiIrENqRiY+Xnsci3ZfUMth5YthTp8wlCtuv6U5hqwqlJPgRvj7+6v/JeiR0p62bdtmbVOjRg2UL18eu3fvVsvyf2hoqAp09Dp06ID4+HgcPXrU7J+BiIjImpy/mYSeX+3KCnT+07ISfvpPE4cJdKyqgbJOp8Prr7+OZs2aoU6dOmpddHS0KpkpVqxYtm0lsJHn9NsYBjr65/XP5SY1NVU99CQwEhJYycMY9Psx1v4od8xn82Femwfz2XwcIa/XHo7Ge78eRVJqJop7ueGTHnXwRPVSgC4T6bpMm8/n/O7TaoIdabtz5MgR7Ny50ywNoydNmnTfeqkSk0bOxiRtkcj0mM/mw7w2D+az+dhjXqdlAqsvOGPX9XsVOJV8NAyoehd3o/ZhXZT95HNycrLtBDvDhw/H77//ju3bt6Ncuf8/m2pQUJBqeBwbG5utdEd6Y8lz+m327t2bbX/63lr6bXIaN24cxowZk61kJzg4WDWO9vX1NVq0KV9su3bt4ObmZpR90v2Yz+bDvDYP5rP52Gten72RhFHLD+LE9UQ4OQFDWlTEyDaV4eribHf5rK+ZsepgR9M0jBgxAqtXr8bWrVtRsWLFbM83aNBAZcymTZtUl3MhXdOlq3mTJk3Usvz/0UcfISYmRjVuFpKpErTUqlUr1/f18PBQj5zkvYz9RZhin3Q/5rP5MK/Ng/lsPvaU16sjLuO91UeQnJaJEt7u+Py5+mhZrRSsgamusVYf7EjVlfS0+vXXX9VYO/o2Nn5+fihSpIj6f/DgwaoURhotSwAjwZEEONITS0hpjAQ1/fv3x/Tp09U+3n//fbXv3AIaIiIie3M3LRMTfjuCn/69rJYfr+SPWc+HIdDX09JJswoWDXa++uor9X/r1q2zrZfu5QMHDlR/f/7553B2dlYlO9KoWHpaffnll1nburi4qCqwoUOHqiDI29sbAwYMwOTJk838aYiIiMzv9PUEDFtyAKf+r9pqZJuqGPlkVbg4O1k6aVbD4tVYD+Pp6Yl58+apR15CQkKwbt06I6eOiIjIuq349xI++PUIUtJ1KOXjgVnP1UfTKiUtnSyrYxUNlImIiCj/klIzVJCz6sAVtdy8SknVPkcCHrofgx0iIiIbciI6HsMWH0DUjSRITdWYdtXwWusqcGa1VZ4Y7BAREdkAafqxbN8lTPztKFIzdAj09cDs58PQuFIJSyfN6jHYISIisnIJKel4d/URrDl4VS23qlYKM3vXQ4mirLbKDwY7REREVuzIlTgMX3IA528lqx5Wb3WojldbVGK1VQEw2CEiIrLSaqsf91zAlN+PIy1ThzJ+npjTNwwNQu5Nlk35x2CHiIjIysSnpGPsz4ew7vC9wXbb1gzAp8/WQ3Fvd0snzSYx2CEiIrIiBy/FYvjSA7h0+y7cXJzwTscaGNy8IpxkxEAqFAY7REREVlJtteDv85j6x3GkZ2ooV7wI5vYNR/3g/z8RNhUOgx0iIiILi01Ow1srD2HjsetquWPtIHzybF34FbGPCUotjcEOERGRBR24eAcjlkTgSuxduLs4472nauLFJiGstjIiBjtEREQWoNNp+G7nWUxffxIZOg0hJbwwt084Qsv5WTppdofBDhERkZndTkrDmysOYvOJGLX8VN3SmNYjFD6erLYyBQY7REREZrTv/G2MXBqBa3EpcHd1xoQutdC3UXlWW5kQgx0iIiIzVVt9tS0KMzeeQqZOQ6WS3qq3Va0yvpZOmt1jsENERGRiNxNTMXp5JHacvqmWu9cvgw+fCUVRD16GzYG5TEREZEK7o25h1LIIxCSkwtPNGZO71kGvhuVYbWVGDHaIiIhMQKqq5m4+g1mbTkGnAVUCimJe33BUD/KxdNIcDoMdIiIiI4tJSMHryyKxK+qWWu7VoBwmdasNL3dedi2BuU5ERGREO0/fxOvLI3AzMQ1F3Fzw0TN10CO8nKWT5dAY7BARERlBRqYOszadxtwtZ6BpQI0gH9XbSqqvyLIY7BARET2i6LgUjFwWgb3nbqvlPo2CMaFLbXi6uVg6acRgh4iI6NFsPRmDMT8dVKMie7u74OMeoehWv6ylk0UGGOwQEREVQnqmDp9tOIX526LUcq3SvpjXLxwVS3pbOmmUA4MdIiKiApIZymXKh/0X7qjl/o+HqNnKWW1lnRjsEBERFcBfx67jzZUHEZucDh8PV3zybF10Di1t6WTRAzDYISIiyoe0DB2mrz+B73aeU8t1y/lhbp9wlC/hZemk0UMw2CEiInqIS7eTMXxpBA5eilXLg5pVxDudqsPDldVWtoDBDhER0QOsPxKNt1YeREJKBnw9XTGjVz20rx1k6WRRATDYISIiykVqRiamrjuBhbvOq+Ww8sUwp08YyhVntZWtYbBDRESUw4VbSRi+JAKHr8Sp5VdbVsJbHarDzcXZ0kmjQmCwQ0REZOD3Q1cx9ufDSEzNQHEvN3zWux7a1Ai0dLLoETDYISIiApCSnokpvx/D4n8uquWGIcUxp28YSvsVsXTS6BEx2CEiIod39kYihi2JwPFr8Wr5tdaVMaZdNbiy2souMNghIiKH9uvBaxj/2zEkp2WihLc7Zj5XH62qlbJ0ssiIGOwQEZFDupuWiaVRztiz+7BafrySP2Y9H4ZAX09LJ42MjMEOERE5nNPXE/Da4v04HeMMJydgRJuqGPVkVbg4O1k6aWQCDHaIiMihrPj3Esb/ehR30zPh46Zh3gsN0bI6Bwm0Zwx2iIjIISSlZuCDX49g1YErarlpZX90KhaDJpVKWDppZGJsZk5ERHbvRHQ8us7dqQIdqal6o101/PBiA/i6WzplZA4s2SEiIrulaRqW77uECb8dRWqGDoG+HqoR8uOVSiA9Pd3SySMzYbBDRER2SUZAfnfVYfx28Kpalu7kM3vXQ4miHpZOGpkZgx0iIrI7R6/Gqbmtzt1MUj2s3mxfHf9pWQnO7G3lkBjsEBGRXVVb/fjPRTXtQ1qGDqX9PNVM5Q0r+Fs6aWRBDHaIiMguxKekY9zPh7H28DW1/GSNAMzoVQ/FvdkK2dEx2CEiIpt36HKsqra6eDsZrs5OGNupBgY3rwgnGTGQHB6DHSIisulqqwV/n8fUP44jPVND2WJFMLdvGMLKF7d00siKMNghIiKbFJecjrdWHsSGY9fVcofagZjesx78vNwsnTSyMgx2iIjI5kRcvKOqra7E3oW7izPe7VwDA5pWYLUV5YrBDhER2QydTsP3O8/hk/UnkKHTUN7fC/P6hiO0nJ+lk0ZWjMEOERHZhDtJaXhjxUFsPhGjlp+qWxpTe4TC15PVVvRgDHaIiMjq/Xv+NkYsjcC1uBS4uzpj/NO10K9xeVZbUb4w2CEiIquutpq/PQqfbTiFTJ2GiiW9VW+r2mVYbUX5x2CHiIis0s3EVIz56SC2n7qhlrvVL4OPnglFUQ9euqhgeMQQEZHV2XP2FkYujUBMQio8XJ0xuVtt9G4YzGorKhQGO0REZDWkqmru5jOYtekUdBpQJaCo6m1VPcjH0kkjG8Zgh4iIrEJMQgpGL4/E32duqeVnG5RTJTpe7rxU0aPhEURERBb395mbGLUsUrXTKeLmgg+710HPBuUsnSyyEwx2iIjIYjIydZi96TTmbDkDTQOqB/pgXr8wVAlgtRUZD4MdIiKyiOvxKWrsnL3nbqvlPo2CMaFLbXi6uVg6aWRnGOwQEZHZbT0Zo7qV305Kg7e7Cz7uEYpu9ctaOllkpxjsEBGRWautPtt4Cl9tjVLLNUv7Yl7fMFQqVdTSSSM7xmCHiIjM4mrsXTV2zr8X7qjl/o+H4L2narLaikyOwQ4REZncpuPX1SSescnp8PFwxbSeddVEnkTmwGCHiIhMJi1Dh0//PIFvd5xTy6Fl/dTcViElvC2dNHIgDHaIiMgkLt1OVr2tIi/FquWXmlXA2E414OHKaisyLwY7RERkdH8ejcZbKw4iPiUDvp6u+LRXPXSoHWTpZJGDylewEx8fX+Ad+/r6FiY9RERkw1IzMjF13Qks3HVeLdcPLoY5fcIQ7O9l6aSRA3POz0bFihVD8eLF8/3w9/fH2bNnH7rf7du3o0uXLihTpoyayfaXX37J9vzAgQPVesNHx44ds21z+/Zt9OvXTwVXks7BgwcjMTGxoPlARESP6MKtJDz71e6sQOeVFhXx03+aMNAh26nGWrlypQpiHkbTNHTu3Dlf+0xKSkK9evUwaNAg9OjRI9dtJLhZsGBB1rKHh0e25yXQuXbtGjZu3Ij09HS89NJLePXVV7FkyZJ8pYGIiB7d2kPXMPbnQ0hIzUAxLzd81qsenqwZaOlkEeU/2AkJCUHLli1RokSJ/GyOSpUqwc3N7aHbderUST0eRIKboKDc63mPHz+O9evXY9++fWjYsKFaN2fOHBVszZgxQ5UYERGR6aSkZ+LDtcfw456LarlhSHHM7hOGMsWKWDppRAULds6du9dlML+OHDkCY9m6dSsCAgJU9VibNm3w4YcfZgVdu3fvVlVX+kBHtG3bFs7Ozvjnn3/wzDPP5LrP1NRU9cjZJklKhuRhDPr9GGt/lDvms/kwr83DlvL53M0kjFx+CCeiE9TykJYVMbJNZbi5ONtE+m0pr21ZugnzOb/7LHBvrIsXLyIwMPC+6iSdTofLly+jfPnyMBapwpLqrYoVKyIqKgrvvvuuKgmSIMfFxQXR0dEqEDLk6uqqqtvkubxMnToVkyZNum/9hg0b4OVl3LplqV4j02M+mw/z2jysPZ//veGEn846I1XnBG9XDf2r6lAz/TQ2/nkatsba89pebDRBPicnJ5sm2KlQoQJq1qyJ3377DZUrV85af+PGDRWUZGZmwlief/75rL9DQ0NRt25d9Z5S2vPkk08Wer/jxo3DmDFjspXsBAcHo3379kbrRSbRpnyx7dq1y1eVHhUO89l8mNfmYe35fDctEx+uO4GfzlxRy40qFMfMXqEI9PWErbH2vLYX6SbM5/z2Fi/UODsS7DRq1Ag//fRTtqBDGiebkrQFKlmyJM6cOaPeV9ryxMTEZNsmIyND9dDKq52PkFKpnCVTQr4EY38Rptgn3Y/5bD7Ma8fN5zMxCRi2OAInryfAyQkY0aYqRrapAleXfHXstVrWmNf2yM1E19j8KPARKt2/v/zyS7z//vt46qmnMHv27GzPmZJUk926dQulS9+bT6VJkyaIjY3F/v37s7bZvHmzqlJr3LixSdNCRORIVu6/jC5z/laBTsmiHvhxcGOMaVfN5gMdcgwFLtnRl96MHj0aNWrUQJ8+fXD48GGMHz++wG8u4+FIKY1hQ+jIyEjV5kYe0q6mZ8+eqpRG2uy8/fbbqFKlCjp06JBVwiTtel555RXMnz9fFZUNHz5cVX+xJxYR0aNLTsvAB78cxc8HLqvlZlVK4PPn6iPAx/aqrchxPdJ0EdJYeNeuXejatSv27t1b4Nf/+++/eOKJJ7KW9e1oBgwYgK+++gqHDh3CokWLVOmNBC/SpmbKlCnZqqAWL16sAhyp1pJeWBIcGZY2ERFR4ZyMTsBri/cj6kYSnJ2A19tWw7AnqsBFFojsOdhp1aoV3N3ds5Zr1aqlunlLr6mCttlp3br1A1/z559/PnQfUgLEAQSJiIxHzsvL913ChN+OIjVDh0BfD8x6PgyPV8rfWGtENh/sbNmy5b51Mu7Ntm3bjJUmIiKykMTUDLy3+jB+jbyqlltWK4XPe9dDiaL3d+ogsrtgJ7/duzgBKBGRbTp6NQ4jlkTg7M0kVVX1RvtqGNKyMpxZbUWOEuzISMUP6m0lxZ7yvDHH2SEiItOT8/eP/1zElN+PIS1Dh9J+nmqm8oYVHj4fIpFdBTuG1Vf6yT6/++47lC1b1lRpIyIiE4tPSce4VYfVRJ7iyRoBmNGrHop7//+2mUQOE+xIw2RDMl3D448/rgb6IyIi23P4chyGLTmAi7eT4ershLGdamBw84omHzONyKa6nhMRke2R0vlFu87j43UnkJapQ9liRTC3bxjCyhe3dNKITILBDhGRA4lLTsfbPx/En0evq+X2tQLx6bP14OfF6RLIfj1SsMOiTiIi2xFx8Q6GL4nAldi7cHNxwruda2Jg0wo8l5Pdy3ewI4MGGkpJScGQIUPg7e2dbf2qVauMlzoiIjJKtdV3O87hk/UnkKHTUN7fS1Vb1S1XzNJJI7KuYMfPzy/b8gsvvGCK9BARkRHdSUrDmysOYtOJGLX8VGhpTO0ZCl9PVluR48h3sLNgwQLTpoSIiIzq3/O3MXJpBK7GpcDd1RkfPF0LLzQuz2orcjhsoExEZGd0Og3zt0fhsw2nkKnTULGkt6q2ql0mewk9kaPId7AzaNCgfG33ww8/PEp6iIjoEdxKTMWYnw5i26kbarlb/TL46JlQFPXgvS05rnwf/QsXLkRISAjCwsIKPLs5ERGZ3j9nb2Hksghcj0+Fh6szJnWtjeceC2a1FTm8fAc7Q4cOxdKlS3Hu3Dm89NJLqoGyvz/nTSEisjSpqvpyyxl8/tcp6DSgcilvzOsXjhpBnJiZSDjnNxvmzZuHa9eu4e2338aaNWsQHByM3r17488//2RJDxGRhdxISMWLP/yDzzbeC3R6hpfDmhHNGegQFSbYER4eHujTpw82btyIY8eOoXbt2njttddQoUIFJCYmFmRXRET0iP4+cxOdZu3A32duoYibi5rA87Pe9eDlzvY5RIYK/YtwdnZW9cBSqpOZmVnY3RARUSGqrWZtOo05m09DCtarB/qo3lZVA30snTQi2y/ZSU1NVe122rVrh2rVquHw4cOYO3cuLl68iKJFi5oulUREpFyPT0Hfb/dg9qZ7gc7zjwXjl2HNGOgQGaNkR6qrli1bptrqSDd0CXpKliyZ35cTEdEjku7kY5ZH4lZSGrzdXfBxj1B0q1/W0skisp9gZ/78+ShfvjwqVaqEbdu2qUduODcWEZFxZWTqVAPkr7ZGqeWapX0xr28YKpViiTqRUYOdF198kWM1EBGZ2dXYu2rKh38v3FHLLzxeHu8/VQuebi6WThqRfQ4qSERE5rP5xHU1GnJscroaAXlaz1A8XbeMpZNFZHPYP5GIyMpk6oBp60/i+78vqOXQsn6qt1VICW9LJ43Ifntj9ejRA/Hx8fneab9+/RATE/Mo6SIickhXYu9i1lGXrEBnYNMKWDm0CQMdIlOX7Pz666+4cePepHIPI+PuyAjLU6ZMQUBAwKOkjYjIofx5NBpvrTiI+BQn+Hq6Yvqz9dCxTpClk0XkGMGOBDAyrg4RERlfWoYOU/84jgV/n1fLIUU1LHy1CSoGcMoHIrMFO1u2bCnwjsuW5dgPREQPc/FWMoYvPYBDl+PU8uBmIaiVEYVyxYtYOmlEjhXstGrVyvQpISJyMOsOX8M7Kw8hITUDxbzcMOPZemhV1R/r1t0bT4eIjIO9sYiIzCwlPRMfrT2O/+251wi5QUhxzOkThjLFiiA9Pd3SySOyOwx2iIjM6NzNJAxbfADHrt3r4Tq0dWWMaVcNbi4FmqqQiAqAwQ4RkZn8GnkF7646jKS0TPh7u2Nm73poXZ29VolMjcEOEZEZqq0mrTmKpXsvqeVGFf0x+/kwBPl5WjppRA6hwOWmEyZMwIUL9+qZiYjowc7EJKLb3L9VoCPTC45sUwVLXm7MQIfImoMdGWCwcuXKePLJJ7FkyRKkpqaaJmVERDbu5/2X0WXOTpy8noCSRT3wv0GNMaZ9dbiyfQ6RWRX4FxcZGYl9+/ahdu3aGDVqFIKCgjB06FC1joiIgOS0DLy54iDeWHEQd9Mz0bRyCawb1RzNq5a0dNKIHFKhbi/CwsIwe/ZsXL16Fd9//z0uX76MZs2aoW7dupg1axbi4u4NjkVE5GhOXU9Q1VYr91+GsxNUT6v/DW6MAB9WWxFZyiOVpco0EjImRFpamvq7ePHimDt3LoKDg7F8+XLjpZKIyMrJOXD5vovoOncnTsckIsDHA4tffhwjn6wKF4l6iMi2gp39+/dj+PDhKF26NEaPHq1Keo4fP45t27bh9OnT+OijjzBy5Ejjp5aIyAolpmZg9PJIvPPzYaSk69CiakmsG9UCTSqXsHTSiKgwXc9DQ0Nx4sQJtG/fXlVhdenSBS4uLtm26dOnj2rPQ0Rk745djcfwJQdw9maSKsF5o301DGlZGc4szSGy3WCnd+/eGDRo0AMn+ixZsiR0Ot2jpo2IyKqrrRb/cxGTfz+mZi0v7eeJ2X3C8FgFf0snjYgetRpL3zYnp7t372Ly5MkF3R0Rkc1JSEnH8KUReP+XIyrQaVMjAGtHtmCgQ2Qvwc6kSZOQmJh43/rk5GT1HBGRPTt8OQ5Pz9mJtYeuwdXZCe91ronvXmyopn8gIjupxpKSHScZBjSHgwcPwt+fdzVEZJ/k3Ldo13l8vO4E0jJ1KFusCOb0DUN4+ftLuonIRoMdqbqSIEce1apVyxbwZGZmqtKeIUOGmCqdREQWE3c3He+sPIT1R6PVcvtagfj02Xrw83KzdNKIyJjBzhdffKHubKRxslRX+fn5ZT3n7u6OChUqoEmTJvndHRGRTYi8FKt6W12+cxduLk54t3NNDGxaIdcSbiKy8WBnwIAB6v+KFSuiadOmcHPjHQ0R2S+5uft+5zlM++MEMnQayvt7YW7fMNQtV8zSSSMiUwQ78fHx8PX1VX/LAILS80oeudFvR0Rkq2KT09TcVn8dj1HLnUODMK1nXfh68iaPyG6DHWmvc+3aNQQEBKBYsWK5Ft/qGy5L+x0iIlu1/8JtjFgSgatxKXB3dcYHT9fCC43Ls9qKyN6Dnc2bN2f1tJK/+aMnInuj02n4evtZzNhwEpk6DRVLeqtqq9pl/n/7RCKy42CnVatWWX+3bt3alOkhIjK7W4mpeGPFQWw9eUMtd61XBh/3CEVRjwKPzkFEVqjAv+QFCxagaNGi6NWrV7b1K1asUAML6hsyExHZgn/O3sLIZRG4Hp8KD1dnTOxaG88/FswSbCJHHkF56tSpau6rnKQ9z8cff2ysdBERmZRUVc3ZdBp9vt2jAp3Kpbzx6/Bm6NOI7XOI4OglOxcvXlTdz3MKCQlRzxERWbsbCakYvTwSO8/cVMs9wstiSrc68Ga1FZFdKvAvW0pwDh06pAYRzDldRIkSJYyZNiIio9t15iZGLY9UAU8RNxdM7lYbvRoGWzpZRGRNwU6fPn0wcuRI+Pj4oGXLlmrdtm3bMGrUKDz//POmSCMRkVGqrWZtOo05m09D04BqgUUxr284qgb6WDppRGRtwc6UKVNw/vx5PPnkk3B1vfdynU6HF198kW12iMgqXY9PwahlEdhz9rZafq5hsGqIXMTdxdJJIyIzKHCwI/NgLV++XAU9UnVVpEgRhIaGqjY7RETWZvupG6p9zq2kNHi5u+DjZ0LRPayspZNFRGZU6NZ4MvO5PIiIrFFGpg4zN57Cl1uj1HLN0r6Y1zcMlUoVtXTSiMgag50xY8aokhxvb2/194PMnDnTWGkjIiqUa3F3MXJpBPadv6OW+zUur6Z98HRjtRWRI8pXsBMREYH09PSsv/PCsSmIyNK2nIjBmJ8icSc5XY2APK1nKJ6uW8bSySIiaw92tmzZkuvfRETWIj1Thxl/nlTzW4k6ZX0xt084KpT0tnTSiMjCOIIWEdm8y3eSMWJpBCIuxqrlgU0rYFznGvBwZbUVERUi2ElKSsK0adOwadMmxMTEqG7nhs6evXdXRURkDhuORuOtlYcQdzcdPp6u+PTZuuhYp7Slk0VEthzsvPzyy2oQwf79+6N06dJsp0NEFpGWocPUP45jwd/n1XK94GKY2ycMwf5elk4aEdl6sPPHH39g7dq1aNasmWlSRET0EBdvJWP40gM4dDlOLb/cvCLe7lgD7q4FntuYiBxAgYOd4sWLw9/f3zSpISJ6iD8OX8PbKw8hITUDfkXc8FmvemhbK9DSySIiK1bg2yAZb2f8+PFITk5+5Dffvn07unTpgjJlyqjqsF9++SXb85qmqfeS6jIZqblt27Y4ffp0tm1u376Nfv36wdfXF8WKFcPgwYORmJj4yGkjIuuSkp6J8b8ewdDFB1Sg0yCkONaNasFAh4iMX7Lz2WefISoqCoGBgWrmczc3t2zPHzhwoECNnevVq4dBgwahR48e9z0/ffp0zJ49G4sWLULFihXxwQcfoEOHDjh27Bg8PT3VNhLoXLt2DRs3blRjAb300kt49dVXsWTJkoJ+NCKyUuduJmH4kgM4ejVeLQ9pVRlvtK8GNxdWWxGRCYKd7t27w1g6deqkHrmRUp0vvvgC77//Prp166bW/fe//1VBlpQAyQzrx48fx/r167Fv3z40bNhQbTNnzhx07twZM2bMUCVGRGTbfjt4FeN+PoSktEz4e7vjs9718ET1AEsni4jsOdiZMGECzOHcuXOIjo5WVVd6fn5+aNy4MXbv3q2CHflfqq70gY6Q7Z2dnfHPP//gmWeeyXXfqamp6qEXH3/vblFKhvQjRT8q/X6MtT/KHfPZfvNaqq0+XHcSy/+9rJYbhhTD573rIsjX066/bx7T5sO8tv18zu8+Cz2o4P79+1XJiqhduzbCwsJgTBLoCCnJMSTL+ufk/4CA7Hd4rq6uqgG1fpvcTJ06FZMmTbpv/YYNG+DlZdxuq1K9RqbHfLavvL5+F1hwygXXkp3gBA3tymroWPomDuzcDEfBY9p8mNe2m8/5bT9c4GBHBhKUUpWtW7eqUhURGxuLJ554AsuWLUOpUqVg7caNG5dtQlMp2QkODkb79u1VQ2djRZvyxbZr1+6+dk1kPMxn+8vrXyKv4os1x5GclokSUm3VKxTNKpeAo+AxbT7Ma9vPZ33NjNGDnREjRiAhIQFHjx5FzZo11TppMDxgwACMHDkSS5cuhTEEBQWp/69fv656Y+nJcv369bO2keDLUEZGhuqhpX99bjw8PNQjJ/kSjP1FmGKfdD/ms+3ndXJaBib8ehQr9t+rtmpauQS+eK4+AnzvdUZwNDymzYd5bR6musbmR4G7MkiD4C+//DIr0BG1atXCvHnz1ICDxiK9ryRgkWkpDCM4aYvTpEkTtSz/S6mSVKnpbd68WU1hIW17iMg2nLqegG5z/1aBjrMTMLptNfxvcGOHDXSIyLgKXLIjgURukZSsyzlP1sPIeDhnzpzJ1ig5MjJStbkpX748Xn/9dXz44YeoWrVqVtdz6WGl7xEmAVfHjh3xyiuvYP78+aqobPjw4aqajT2xiKyf9Lpc8e9ljP/tCFLSdQjw8cCs58PQxIGqrYjICoOdNm3aYNSoUaq6Sh9QXLlyBaNHj8aTTz5ZoH39+++/qq2Pnr4djVSJLVy4EG+//bYai0fGzZESnObNm6uSJf0YO2Lx4sUqwJH3ll5YPXv2VGPzEJF1S0rNwPu/HMHqiCtquUXVkvj8ufooWfT+KmYiIrMGO3PnzkXXrl3VgILSqFdcunQJderUwY8//ligfbVu3Vrd2eVFRlWePHmyeuRFSoE4gCCRbTl+LR7DFh/A2ZtJcHF2wph21TC0VWU4Sx0WEZGlgx0JcGSU5L/++gsnTpzIqk4yHA+HiCg3cnOzZO9FTFpzTM1aLmPmzOkbhscqcL49IjKdQo2zIyUu0oVMHkRE+ZGQko5xqw7j90PX1PIT1Uvhs9711ajIRERWF+zI9AxbtmxR3b5zNkqeOXOmsdJGRHbiyJU4DFtyABduJcPV2Qlvd6yOl5tXYrUVEVlnsPPxxx+r+aqqV6+uRjOWUh49w7+JiKTa6r+7L+CjtceRlqlD2WJFMLtPmJqxnIjIaoOdWbNm4YcffsDAgQNNkyIisgtxd9PxzspDWH/03tQt7WoF4tNn66KYF6utiMjKgx3p3t2sWTPTpIaI7ELkpVgMX3IAl+/chZuLE8Z1qomXmlVg6S8RWUSBR1CW8XRktGQiotyqrb7bcRa95u9SgU6wfxGsHNIUg5pXZKBDRLZTsvPmm2/iqaeeQuXKldU0ETlHU161apUx00dENiI2OQ1vrjiEv45fV8ud6gRhWs+68CvCOYeIyMaCHZnsU3piycjHJUqU4N0aEWH/hTsYseQArsalwN3FGR88XRMvPB7C8wMR2Waws2jRIvz888+qdIeIHJtOp+GbHWfx6Z8nkanTUKGEF+b2DUedsn6WThoRUeGDHZmeQaqwiMix3UpMxRsrDmLryRtquUu9Mvj4mTrw8WS1FRHZeAPliRMnYsKECUhOTjZNiojI6u09dxudZ+9QgY6HqzOm9gjF7OfrM9AhIvso2ZEZxaOiotSAgjIZaM4GyjJvFhHZJ50GfLn1LGZtPqP+rlTKG/P6hqNmaV9LJ42IyHjBTvfu3Qv6EiKyAzcTUzH/uDNOxp1Ryz3CymJK9zrw9ijUrDNERGZToLNURkaG6l0xaNAglCtXznSpIiKrsuvMTYxaFoEbic7wdHPGlG510KthsKWTRURk/DY7rq6u+PTTT1XQQ0T2T3pYfb7xFPp9/w9uJKYhqIiGVUMeZ6BDRDalwOXPbdq0wbZt21R7HSKyXzHxKRi1LBK7z95Sy8+Gl0Vj1wuoGlDU0kkjIjJtsNOpUyeMHTsWhw8fRoMGDeDt7Z3t+a5duxZ0l0RkZXacvoHRyyNxMzENXu4u+OiZOni6TiDWrbtg6aQREZk+2HnttdfU/zNnzrzvOWnPk5mZWfBUEJFVyMjU4Yu/TmPe1jPQNKBGkA/m9QtH5VJFkZ6ebunkERGZJ9jR6XSFeycismrX4u5i1NJI7D1/Wy33bVwe45+uBU83F0snjYjokbDPKBFhy4kYjPkpEneS01HUw1UNEigjIhMROWywk5SUpBopX7x4EWlpafdNFEpEtiE9U4cZf57E19vPquU6ZX0xt084KpTM3haPiMihgp2IiAh07txZTRchQY/MlXXz5k14eXkhICCAwQ6RjbgSe1fNVH7gYqxaHti0AsZ1rgEPV1ZbEZGDz401evRodOnSBXfu3EGRIkWwZ88eXLhwQfXMmjFjhmlSSURGtfHYdXSetUMFOj6erpj/Qjgmdq3NQIeI7FKBS3YiIyPx9ddfw9nZGS4uLkhNTUWlSpUwffp0DBgwAD169DBNSonokaVl6DDtjxP44e9zarleOT/M7RuOYH8vSyeNiMh6gh2Z+FMCHSHVVtJup2bNmvDz88OlS5dMkUYiMoJLt5MxfMkBHLwcp5YHN6+IdzrWgLtrgQt4iYjsO9gJCwvDvn37ULVqVbRq1Qrjx49XbXb+97//oU6dOqZJJRE9kvVHruGtlYeQkJIBvyJumNGrHtrVCrR0soiIzKLAt3Qff/wxSpcurf7+6KOPULx4cQwdOhQ3btzAN998Y4o0ElEhpaRnYsKvRzDkxwMq0AkvXwzrRrVgoENEDqXAJTsNGzbM+luqsdavX2/sNBGREZy/mYRhSw7g6NV4tfyfVpXwZvvqcHNhtRURORYOKkhkh9YcvIpxqw4jMTUDxb3cMLN3fTxRI8DSySIisogC3+Jdv34d/fv3R5kyZeDq6qp6ZBk+iMiy1Vbvrj6MEUsjVKDTqIK/qrZioENEjqzAJTsDBw5UPbA++OAD1XZHJv8kIsuLupGIYYsP4ER0AuRnOfyJKhj1ZFW4stqKiBxcgYOdnTt3YseOHahfv75pUkREBbY64jLeW30EyWmZKFnUHZ8/Vx8tqpaydLKIiGwz2AkODoamaaZJDREVyN20TIz/9QhW7L+slptUKoFZz9dHgK+npZNGRGQ1Cly+/cUXX2Ds2LE4f/68aVJERPly6noCus7dqQIdqbZ6vW1V/PhyYwY6RESFKdmRsXQM2+bIBKCVK1dWk3/KiMqGbt++nZ9dElEhScmqBDhSopOSrkMpHw9VmtO0cklLJ42IyHaDHSnNISLLS0rNwAe/HMGqiCtquUXVkqp9TsmiHpZOGhGRbQc7MsEnEVnW8WvxapDAszeS4OwEvNG+Ooa2qgxnWSAiIuMOKqjT6XDmzBnExMSovw21bNmyMLskogdUWy3dewmT1hxFaoYOQb6emN0nDI0q+ls6aURE9hns7NmzB3379sWFCxfu65Ul7XoyMzONmT4ih5aQko53Vx9RIyKL1tVLqdGQ/b3dLZ00IiL7DXaGDBmi5sdau3YtBxUkMqEjV+IwfMkBnL+VDBdnJ7zdoTpeaVGJ1VZERKYOdk6fPo2VK1eiSpUqBX0pEeWDlJj+b88FfPj7caRl6lC2WBFVbdUgpLilk0ZE5BjBTuPGjVV7HQY7RMYXdzcdY38+hD+ORKvltjUDMaNXXRTzYrUVEZHZgp0RI0bgjTfeQHR0NEJDQ+8bZ6du3bqFTgyRIzt4KRbDlx7Apdt34ebihLGdamJQswqsKiYiMnew07NnT/X/oEGDstbJyViK3tlAmajg5Lfzw9/nMe2P40jP1BDsXwRz+4SjXnAxSyeNiMgxg51z586ZJiVEDig2OQ1vrjiEv45fV8ud6gRhWs+68CuSvcSUiIjMGOyEhIQ8wtsRkd7+C3cwcmkErsTehbuLM95/uib6Px7CaisiImsYVFAcO3YMFy9eRFpaWrb1Xbt2NUa6iOyWTqfh2x1n8emfJ5Gh0xBSwgvz+oajTlk/SyeNiMguFTjYOXv2LJ555hkcPnw4q62O0N+Nss0OUd5uJ6XhjZ8iseXkDbX8dN3SmNojFD6erLYiIjIV54K+YNSoUahYsaKaKkJmPT969Ci2b9+uBhrcunWraVJJZAf2nruNzrN2qEDH3dUZHz8Tijl9whjoEBFZW8nO7t27sXnzZpQsWRLOzs7q0bx5c0ydOhUjR45ERESEaVJKZMPVVl9ti8LMjaeQqdNQqZS3qraqWdrX0kkjInIIBQ52pJrKx8dH/S0Bz9WrV1G9enXVcPnkyZOmSCORzbqZmIrRyyOx4/RNtdwjrCymdK8Db49CN5cjIqICKvAZt06dOjh48KCqypLRlKdPnw53d3d88803qFSpUkF3R2S3dkXdxKhlkbiRkApPN2dM7lYHvRqUY28rIiJrD3bef/99JCUlqb8nT56Mp59+Gi1atECJEiWwfPlyU6SRyKZIVdWczacxe9Np6DSgakBRzOsXjmqB90pEiYjIyoOdDh06ZP0t82OdOHECt2/fRvHixXnHSg4vJj4Fry+PxK6oW2q5d8NymNS1Doq4u1g6aUREDssoDQf8/f2NsRsim7bj9A3VPudmYhq83F3wYfc66BFeztLJIiJyeGwlSfSIMjJ1+OKv05i39Qxk2KkaQT6Y2zccVQKKWjppRETEYIfo0UTHpagpH/aev62W+zYuj/FP14KnG6utiIisBYMdokLacjIGb/x0UI2KXNTDFR/3CEXXemUsnSwiIsqBwQ5RAaVn6jBjw0l8ve2sWq5dxldVW1Us6W3ppBERUS4Y7BAVgMxQLtVWMmO5GNAkBOM612S1FRGRFWOwQ5THWDkyl1VMQgoCfDzRqKI/tpyIwRsrDiLubjp8PF0xvWdddAotbemkEhHRQzDYIcph/ZFrmLTmGK7FpWSt83Z3QVJapvq7Xjk/zOkTjvIlvCyYSiIiyi8GO0Q5Ap2hPx6AlmO9PtBpUyMA819ooGYtJyIi28AzNpFB1ZWU6OQMdAwdvxYPF2eOFE5EZEsY7BD9H2mjY1h1lRt5XrYjIiLbwWCH6P9IY2RjbkdERNbBqoOdiRMnqslFDR81atTIej4lJQXDhg1TM64XLVoUPXv2xPXr1y2aZrJdUTcS87Wd9M4iIiLbYdXBjqhduzauXbuW9di5c2fWc6NHj8aaNWuwYsUKbNu2DVevXkWPHj0sml6yPSnpmXh39WHM3nTmgdtJS53Sfve6oRMRke2w+t5Yrq6uCAoKum99XFwcvv/+eyxZsgRt2rRR6xYsWICaNWtiz549ePzxxy2QWrLF0pxhiw/gRHQCnJyAjrWDsP5ItHrOsKGyvknyhC612ECZiMjGWH3JzunTp1GmTBlUqlQJ/fr1w8WLF9X6/fv3Iz09HW3bts3aVqq4ypcvj927d1swxWQrfom4gi5zdqpAp4S3O/47qBG+eqEBvnohHEF+2auqZFnWd6zDQQSJiGyNVZfsNG7cGAsXLkT16tVVFdakSZPQokULHDlyBNHR0XB3d0exYsWyvSYwMFA99yCpqanqoRcfH6/+l+BJHsag34+x9kfGy+e7aZmYsu4EVuy/opYfr1gcn/WqiwAfD7WfJ6uXROuqLfDvhTuISUhV6xuGFFclOo78ffKYNg/ms/kwr20/n/O7TydN0x40rIhViY2NRUhICGbOnIkiRYrgpZdeyha0iEaNGuGJJ57AJ5988sCGzxI45SRVYl5eHBXXnkUnAwtOuSD6rhOcoKFDOXnowJopIiLbk5ycjL59+6qmLb6+vrZZspOTlOJUq1YNZ86cQbt27ZCWlqYCIMPSHemNlVsbH0Pjxo3DmDFjspXsBAcHo3379g/MrIJGmxs3blTpdHNzM8o+6dHy+ecDV/D578eRkq5DqaLu+KxXKJpUKmG2tNo6HtPmwXw2H+a17eezvmbmYWwq2ElMTERUVBT69++PBg0aqEzbtGmT6nIuTp48qdr0NGnS5IH78fDwUI+cZH/G/iJMsU8qWD4npWbgg1+PYNWBe9VWLaqWxMze9VHK5/5jgB6Ox7R5MJ/Nh3ltHqa6xtp8sPPmm2+iS5cuqupKupVPmDABLi4u6NOnD/z8/DB48GBVQuPv769KZEaMGKECHfbEIr0T0fGqt1XUjSRVVTWmXTW81roKnFlvRUTkMKw62Ll8+bIKbG7duoVSpUqhefPmqlu5/C0+//xzODs7q5IdabvToUMHfPnll5ZONlkBaYq2bN8lTPztKFIzdAj09cDs58PQmNVWREQOx6qDnWXLlj3weU9PT8ybN089iPQSUtLx7uojWHPwqlpuXb0UPutVDyWKstqKiMgRWXWwQ1RQR67EYfiSAzh/K1l1FX+7Q3W80qISq62IiBwYgx2ym2qr/+0+jym/H0dapg5l/Dwxp284GoQUt3TSiIjIwhjskM27mwGMXH4I64/emwS2bc1AzOhVF8W83C2dNCIisgIMdsimHb4Sh08PueBW6nW4uTjhnY41MLh5RTjJRFdEREQMdsiWq60W/H0eU/84jvRMJ5Qr5om5/RqgfnD26UOIiIgY7JDNiU1Ow1srD2HjsXvVVnX9dVgwpAlK+HKqDyIiuh+DHbIpBy7ewYglEbgSexfuLs4Y27Ea/G8dgW8Rjn5KRES5c85jPZFV0ek0fLM9Cr3n71aBTkgJL6x6rSn6P14ebJ5DREQPwpIdsnq3k9Lw5oqD2HwiRi0/Xbc0pvYIhY+nm5pgjoiI6EEY7JBV23f+NkYujcC1uBS4uzpjYpfa6NMomL2tiIgo3xjskNVWW321LQozN55Cpk5DpZLemNcvHDVL+1o6aUREZGMY7JDVuZmYitHLI7Hj9E21/ExYWXzYvQ68PXi4EhFRwfHqQVZld9QtjFoWgZiEVHi6OWNy1zro1bAcq62IiKjQGOyQVZCqqrmbz2DWplPQaUDVgKKq2qpaoI+lk0ZERDaOwQ5ZXExCCl5fFoldUbfUcq8G5TCpW214ufPwJCKiR8erCVnUztM38frySNVOx8vdRbXN6RFeztLJIiIiO8JghywiI1OHWZtOY+6WM9A0oEaQD+b2DUeVgKKWThoREdkZBjtkdtFxKRi5LAJ7z91Wy30alceELrXg6eZi6aQREZEdYrBDZrX1ZAzG/HRQjYrs7e6CqT3romu9MpZOFhER2TEGO2QW6Zk6fLbhFOZvi1LLtcv4qmqriiW9LZ00IiKycwx2yOSuxt7FiKUR2H/hjlp+sUkI3u1ck9VWRERkFgx2yKT+OnYdb648iNjkdPh4uOKTZ+uic2hpSyeLiIgcCIMdMom0DB2mrz+B73aeU8t1y/lhbp9wlC/hZemkERGRg2GwQ0Z36XYyhi+NwMFLsWp5ULOKGNuphpq1nIiIyNwY7JBRrT8SjbdXHkR8SgZ8PV0xo1c9tK8dZOlkERGRA2OwQ0aRmpGJqetOYOGu82o5rHwxzOkThnLFWW1FRESWxWCHHtmFW0kYviQCh6/EqeX/tKyENztUh5sLq62IiMjyGOzQI/n90FWM/fkwElMzUNzLDZ/1roc2NQItnSwiIqIsDHaoUFLSMzHl92NY/M9FtfxYheKY3ScMpf2KWDppRERE2TDYoTxl6jQ1f1VMQgoCfDzRqKI/XJydcPZGIoYticDxa/FwcgJea10Zo9tWgyurrYiIyAox2KFcrT9yDZPWHMO1uJSsdaX9PNGxThCW77uE5LRMlPB2x+fP1UfLaqUsmlYiIqIHYbBDuQY6Q388AC3Hegl8Fvx9r7fV45X8Mev5MAT6elokjURERPnFYIfuq7qSEp2cgY6hoh6u+O+gxhwkkIiIbAKvVpSNtNExrLrKjfS80k/qSUREZO0Y7FA20hjZmNsRERFZGoMdykZ6XRlzOyIiIktjmx3Komkazt1MfOA2TgCC/O51QyciIrIFDHYoqx3Ou6sO47eDVx8Y6IgJXWqp8XaIiIhsAYMdwtGrcWpuq3M3k1QQ81aH6ihf3AtT1mYfZ0dKdCTQ6VintEXTS0REVBAMdhy82urHPRcwZe1xpGXoUMbPE3P6hqFByL0qqg51gnIdQZmIiMiWMNhxUPEp6Rj78yGsOxytltvWDMCnz9ZDcW/3rG0ksGlSuYQFU0lERPToGOw4oEOXY1W11cXbyXB1dsLYTjUwuHlFOMlEV0RERHaGwY6DVVvJdA9T/ziO9EwN5YoXwdy+4agfXMzSSSMiIjIZBjsOIi45HW+tPIgNx66r5Y61g/DJs3XhV8TN0kkjIiIyKQY7DiDi4h1VbXUl9i7cXZzx3lM18WKTEFZbERGRQ2CwY8d0Og3f7zyHT9afQIZOQ0gJL8ztE47Qcn6WThoREZHZMNixk5nKc3YRj7+bjjdWHMTmEzFqm6fqlsa0HqHw8WS1FRERORYGOzZu/ZFrmLQm++B/JbzdkalpiE1Oh7ursxoIsG+j8qy2IiIih8Rgx8YDnaE/HoCWY/2tpDT1f6CPBxa81Ai1yvhaJH1ERETWgLOe23DVlZTo5Ax0DElJTvUgHzOmioiIyPow2LFR0kbHsOoqN9HxKWo7IiIiR8Zgx0ZJY2RjbkdERGSvGOzYKGl4nB/SO4uIiMiRsYGyjXUpl8k5/z5zE++vPvLA10q/qyC/e68hIiJyZAx2bKhLeZCvJ8LLF8MfR6OhaUDZYp64EpuiAhvDhsr6DubS5VyCIyIiIkfGaiwr7lKeswGyNDhed+ReoNOnUTA2vdEa818IVyU4hmT5qxfC0bFOaTOnnIiIyPqwZMcGu5QX83LDh91DVamNBDTtagXlWt1FREREDHasrn2OtMd5WJdyGRlZtm1SuYRalsBG/zcRERFlx2DHStvnPAy7lBMREeUPgx0rnfLhYdilnIiIKH8Y7Fiw2mrP2VsY+/PhAgU67FJORERUMAx2bKTaSrBLORERUcEx2DGzdYeu4rUlEYV6rZToSKDDLuVERET5x2DHjNVWszaewuwtZwr82uFPVEazKqXYpZyIiKgQGOyYIciZt/Ek5m2JQrquYM2Q9e1zRrerziCHiIiokBjsmNC+GCeMmbgRmQXtasX2OUREREbDYMdEus37G8eiCz8bB9vnEBERGYfdzI01b948VKhQAZ6enmjcuDH27t1rsbQ89uFGHItOMiifyT+ZCmLx4MbY+U4bBjpERERGYBfBzvLlyzFmzBhMmDABBw4cQL169dChQwfExMSYPS2DFu7FjcS0Qr9+Wo9QNKtaklVXRERERmIXwc7MmTPxyiuv4KWXXkKtWrUwf/58eHl54YcffjBrOu6mZWLziRuFeq2ENl/2DWNpDhERkZHZfLCTlpaG/fv3o23btlnrnJ2d1fLu3bvNmpaP1x0r9GvnPB+GznXLGDU9REREZAcNlG/evInMzEwEBgZmWy/LJ06cyPU1qamp6qEXHx+v/k9PT1ePwjp7I7FQr3u5WQg61C71SO/tqPR5xrwzPea1eTCfzYd5bfv5nN992nywUxhTp07FpEmT7lu/YcMGVf1VaIlSGeWS781doaF/NR1CdVFYty6q8O9L2Lhxo6WT4DCY1+bBfDYf5rXt5nNycrJjBDslS5aEi4sLrl+/nm29LAcFBeX6mnHjxqkGzYYlO8HBwWjfvj18fX0LnZYn0jJRd8qmfG3bsXYAvuhdjw2RjRDVyw+oXbt2cHNzs3Ry7Brz2jyYz+bDvLb9fNbXzNh9sOPu7o4GDRpg06ZN6N69u1qn0+nU8vDhw3N9jYeHh3rkJF/Co3wR8tp2tQKw8diDe4G90qIi3nuqVqHfh2D0747yj3ltHsxn82Fe224+53d/Nt9AWUgpzbfffotFixbh+PHjGDp0KJKSklTvLHP79sXHVMCTGzdnJ3zZN5yBDhERkRnZfMmOeO6553Djxg2MHz8e0dHRqF+/PtavX39fo2VzBjzxSSkY+vUGxLkWg18Rd7zavBKaVy/FaisiIiIzs4tgR0iVVV7VVpZQxN0FvStr6Ny5CYtHiYiILMguqrGIiIiI8sJgh4iIiOwagx0iIiKyawx2iIiIyK4x2CEiIiK7xmCHiIiI7BqDHSIiIrJrDHaIiIjIrjHYISIiIrtmNyMoPwpN0wo0e2p+Z3mVqedlnxxB2XSYz+bDvDYP5rP5MK9tP5/11239dTwvDHYAJCQkqP+Dg4MtnRQiIiIqxHXcz88vz+edtIeFQw5Ap9Ph6tWr8PHxgZOTk9GiTQmeLl26BF9fX6Psk+7HfDYf5rV5MJ/Nh3lt+/ksIYwEOmXKlIGzc94tc1iyIw2XnJ1Rrlw5k+xbvlj+iEyP+Ww+zGvzYD6bD/PatvP5QSU6emygTERERHaNwQ4RERHZNQY7JuLh4YEJEyao/8l0mM/mw7w2D+az+TCvHSef2UCZiIiI7BpLdoiIiMiuMdghIiIiu8Zgh4iIiOwagx0iIiKyawx2HsG8efNQoUIFeHp6onHjxti7d+8Dt1+xYgVq1Kihtg8NDcW6devMllZHyedvv/0WLVq0QPHixdWjbdu2D/1eqPDHtN6yZcvU6OPdu3c3eRodMZ9jY2MxbNgwlC5dWvVoqVatGs8fJsrrL774AtWrV0eRIkXUqL+jR49GSkqK2dJri7Zv344uXbqoUYzlPPDLL7889DVbt25FeHi4Op6rVKmChQsXmjaR0huLCm7ZsmWau7u79sMPP2hHjx7VXnnlFa1YsWLa9evXc93+77//1lxcXLTp06drx44d095//33Nzc1NO3z4sNnTbs/53LdvX23evHlaRESEdvz4cW3gwIGan5+fdvnyZbOn3d7zWu/cuXNa2bJltRYtWmjdunUzW3odJZ9TU1O1hg0bap07d9Z27typ8nvr1q1aZGSk2dNu73m9ePFizcPDQ/0v+fznn39qpUuX1kaPHm32tNuSdevWae+99562atUq6d2trV69+oHbnz17VvPy8tLGjBmjrodz5sxR18f169ebLI0MdgqpUaNG2rBhw7KWMzMztTJlymhTp07NdfvevXtrTz31VLZ1jRs31v7zn/+YPK2OlM85ZWRkaD4+PtqiRYtMmErHzWvJ36ZNm2rfffedNmDAAAY7Jsjnr776SqtUqZKWlpZmxlTah4LmtWzbpk2bbOvkgtysWTOTp9VeIB/Bzttvv63Vrl0727rnnntO69Chg8nSxWqsQkhLS8P+/ftVFYnh/FqyvHv37lxfI+sNtxcdOnTIc3sqXD7nlJycjPT0dPj7+5swpY6b15MnT0ZAQAAGDx5sppQ6Xj7/9ttvaNKkiarGCgwMRJ06dfDxxx8jMzPTjCl3jLxu2rSpeo2+quvs2bOqurBz585mS7cj2G2B6yEnAi2EmzdvqhONnHgMyfKJEydyfU10dHSu28t6Ml4+5/TOO++oeuScPyx69LzeuXMnvv/+e0RGRpoplY6Zz3LB3bx5M/r166cuvGfOnMFrr72mgngZlZaMl9d9+/ZVr2vevLmaTTsjIwNDhgzBu+++a6ZUO4boPK6HMjv63bt3VXspY2PJDtmtadOmqYazq1evVo0TyXgSEhLQv39/1SC8ZMmSlk6OXdPpdKr07JtvvkGDBg3w3HPP4b333sP8+fMtnTS7I41mpdTsyy+/xIEDB7Bq1SqsXbsWU6ZMsXTS6BGxZKcQ5OTu4uKC69evZ1svy0FBQbm+RtYXZHsqXD7rzZgxQwU7f/31F+rWrWvilDpeXkdFReH8+fOqB4bhRVm4urri5MmTqFy5shlSbv/HtPTAcnNzU6/Tq1mzpro7lqoad3d3k6fbUfL6gw8+UEH8yy+/rJal12xSUhJeffVVFWBKNRg9uryuh76+viYp1RH85gpBTi5yh7Vp06ZsJ3pZlrr13Mh6w+3Fxo0b89yeCpfPYvr06epObP369WjYsKGZUutYeS1DKBw+fFhVYekfXbt2xRNPPKH+li67ZJxjulmzZqrqSh9MilOnTqkgiIGOcfNa2vjlDGj0QSankTQei1wPTdb02QG6NEoXxYULF6quc6+++qrq0hgdHa2e79+/vzZ27NhsXc9dXV21GTNmqC7REyZMYNdzE+TztGnTVFfTlStXateuXct6JCQkWPBT2Gde58TeWKbJ54sXL6oehcOHD9dOnjyp/f7771pAQID24YcfWvBT2Gdey3lZ8nrp0qWqe/SGDRu0ypUrq960lDc5v8pwH/KQsGLmzJnq7wsXLqjnJY8lr3N2PX/rrbfU9VCGC2HXcysmYwOUL19eXVyli+OePXuynmvVqpU6+Rv66aeftGrVqqntpdvd2rVrLZBq+87nkJAQ9WPL+ZCTGBn/mDbEYMd0+bxr1y41VIVcuKUb+kcffaS6/ZNx8zo9PV2bOHGiCnA8PT214OBg7bXXXtPu3LljodTbhi1btuR63tXnrfwveZ3zNfXr11ffixzTCxYsMGkaneQf05UbEREREVkW2+wQERGRXWOwQ0RERHaNwQ4RERHZNQY7REREZNcY7BAREZFdY7BDREREdo3BDhEREdk1BjtERERk1xjsEJFDmjNnDpycnNC0aVM1JxIR2S8GO0RkVbZv365mUy9TpowKRn755Zdct5NJR7/77js1+7psFxAQgISEhGzb1K9fHxMnTrzvtYsXL8abb76J2bNn4/bt2+jZsyfS09OzbXPw4EH06dNHTWoqMzHLTOOzZs0y8qclInNgsENEViUpKQn16tXDvHnz8txGApS///5bBUV6EujMmDHjoftft24dhgwZghUrVmDEiBEquLp69SoGDhyYbWbr/fv3qwDqxx9/xNGjR/Hee+9h3LhxmDt3rhE+JRGZk6tZ342I6CE6deqkHg+ydu1ahIeHIzAwUJXsCAlcZs6ciWHDhqkgJTcSIA0YMACrVq1Cu3bt1DrZduvWrejYsSNGjRqlSnvEoEGDsr22UqVK2L17t3rt8OHDjfRpicgcGOwQkc357bff0K1bt2zrpMpp48aNmDx5cp6lL82aNcONGzfuW1+8eHH8888/D33fuLg4+Pv7P0LKicgSWI1FRDYlNTUV69evR9euXbOtl3Y706ZNwzfffIOoqCijv++uXbuwfPlyvPrqq0bfNxGZFoMdIrIpmzdvVlVPtWvXvu+5Dh06oHnz5vjggw+M+p5HjhxRJUkTJkxA+/btjbpvIjI9BjtEZHNVWDlLdQxJ6Y6UwERERBjl/Y4dO4Ynn3xSlei8//77RtknEZkXgx0ishnSW2rNmjX3tdcx1KhRI/To0QNjx4595PeTXljSxV0aNX/00UePvD8isgw2UCYiq5KYmIgzZ85kLZ87dw6RkZGqYXBMTIwaAFCqqh5EAhOp5nJ1dX2kqqs2bdqoqrExY8YgOjparXdxcUGpUqUKvV8iMj8GO0RkVf79919VmqIngYaQ0hUZ4K9z584PDWKqVaumuo5LY+XCWrlypeq5JePsyEMvJCQkq7s7EdkGJ81wFC0iIitWt25d1W6md+/elk4KEdkQttkhIpuQlpampnV42ICDREQ5sWSHiIiI7BpLdoiIiMiuMdghIiIiu8Zgh4iIiOwagx0iIiKyawx2iIiIyK4x2CEiIiK7xmCHiIiI7BqDHSIiIrJrDHaIiIgI9uz/AUoJdmGp/xbAAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "plt.plot(1/N**2, alpha, marker='o')\n", "plt.xlabel('1/N^2')\n", "plt.ylabel('anharmonicity [MHz]')\n", "plt.title('Anharmonicity as a function of number of junctions')\n", "plt.grid(True)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "61efc02c", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 5 }